1. In ∆ ABC, right-angled at B, AB = 24 cm, BC = 7 cm. The value of tan C is:
ANSWER=> (B)
Explanation/Answer:-
AB = 24 cm and BC = 7 cm
tan C = perpendicular / base tan C = 24/7
Explanation/Answer:-
AB = 24 cm and BC = 7 cm
tan C = perpendicular / base tan C = 24/7
2. (Sin 30°+cos 60°)-(sin 60° + cos 30°) is equal to:
ANSWER=> (C)
sin 30° = ½, sin 60° = √3/2, cos 30° = √3/2 and cos 60° = ½
Putting these values, we get:
(½+½)-(√3/2+√3/2)
= 1 – [(2√3)/2]
= 1 – √3
sin 30° = ½, sin 60° = √3/2, cos 30° = √3/2 and cos 60° = ½
Putting these values, we get:
(½+½)-(√3/2+√3/2)
= 1 – [(2√3)/2]
= 1 – √3
3. 1 – cos²A is equal to:
ANSWER=> (B)
Explanation/Answer:-
1 – cos²A=sin²A
Explanation/Answer:-
1 – cos²A=sin²A
4. If cos X = ⅔ then tan X is equal to:
ANSWER=> (C)
Explanation/Answer:-
1 + tan²X = sec²X
And sec X = 1/cos X = 1/(⅔) = 3/2
Hence,
1 + tan²X = (3/2)² = 9/4
tan²X = (9/4) – 1 = 5/4
tan X = √5/2
Explanation/Answer:-
1 + tan²X = sec²X
And sec X = 1/cos X = 1/(⅔) = 3/2
Hence,
1 + tan²X = (3/2)² = 9/4
tan²X = (9/4) – 1 = 5/4
tan X = √5/2
5. sin 2A = 2 sin A is true when A =
ANSWER=> (C)
Explanation/Answer:-sin 2A = 2 sin A
=> 2sinAcosA = 2 sin A
=> sinAcosA = sin A
=> cosA = 1
=> cosA = cos0°
=> A = 0°
Explanation/Answer:-sin 2A = 2 sin A
=> 2sinAcosA = 2 sin A
=> sinAcosA = sin A
=> cosA = 1
=> cosA = cos0°
=> A = 0°
6. The value of cos 0°. cos 1°. cos 2°. cos 3°… cos 89° cos 90° is
ANSWER=> (C)
Explanation/Answer:- cos 0°. cos 1°. cos 2°. cos 3°… cos 89°. cos 90°
cos 90°=0
Explanation/Answer:- cos 0°. cos 1°. cos 2°. cos 3°… cos 89°. cos 90°
cos 90°=0
7. If x tan 45° sin 30° = cos 30° tan 30°, then x is equal to
ANSWER=> (D)
Explanation/Answer:- x tan 45° sin 30° = cos 30° tan 30°
Put tan 45°=1, sin 30°=1/√2,cos 30°=√3/2 tan 30°=1/√3
Explanation/Answer:- x tan 45° sin 30° = cos 30° tan 30°
Put tan 45°=1, sin 30°=1/√2,cos 30°=√3/2 tan 30°=1/√3
8. If x and y are complementary angles, then
ANSWER= (D)
Explanation/Answer:- If x and y are complementary angles, then X=90-Y
sec x=sec(90-Y)= cosec y
Explanation/Answer:- If x and y are complementary angles, then X=90-Y
sec x=sec(90-Y)= cosec y
9. If A and (2A – 45°) are acute angles such that sin A = cos (2A – 45°), then tan A is equal to
ANSWER= (C)
Explanation/Answer:- sin A = cos (2A – 45°)
cos(90°- A )= cos(2A – 45°)
(90°- A )= (2A – 45°)
3A = 135°
A = 45°
tan 45°=1
Explanation/Answer:- sin A = cos (2A – 45°)
cos(90°- A )= cos(2A – 45°)
(90°- A )= (2A – 45°)
3A = 135°
A = 45°
tan 45°=1
10. If sin θ + sin² θ = 1, then cos² θ + cos^4 θ = ..
ANSWER= (C)
Explanation/Answer:- Given, sin θ + sin² θ = 1
=> sin θ = 1 - sin² θ = cos² θ
Now, putting valuse of cos² θ in cos² θ + cos^4 θ
=> sin θ + sin² θ
So, the solution of cos² θ + cos^4 θ is 1.
Explanation/Answer:- Given, sin θ + sin² θ = 1
=> sin θ = 1 - sin² θ = cos² θ
Now, putting valuse of cos² θ in cos² θ + cos^4 θ
=> sin θ + sin² θ
So, the solution of cos² θ + cos^4 θ is 1.